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Fig. 1. Equipment used in the detection and measurement of C- and X-band power.
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ing figure of 9120 Mc/s fell within 7 percent
of that of the detected output signal when
the tube oscillated at a primary frequency of
6000 Mc/s.

It is worth noting that the amplitude of
the secondary, higher frequency oscillation
encountered in the above case may be ampli-
fied or suppressed through proper modifica-
tion of the dimensional parameters of the
resonator. The former has special signifi-
cance for the millimeter region since it ren-
ders possible the operation of a reflex kly-
stron ata frequency considerably higher than
that which the physical dimensions of its
circuit and beam would normally allow.
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An Exact Analysis of Varactor
Frequency Multipliers

A novel yet simple approach to the exact
analysis of an abrupt-junction frequency
doubler is presented, utilizing the fact that
the voltage is proportional to the square of
the charge. Penfield and Rafuse! were the
first to consider the problem in an exact
analysis. By imposing certain constraints
they obtained useful design information with
the aid of a large-scale computer. Through
different constraints, the present analysis
also offers an exactanalysis, but the solution
is expressed in a closed form. The series
model of incremental elastance S(¢) and re-
sistance R, is shown in the circuit of Fig. 1.

Fig. 1.

Doubler circuit model.

The total current ¢ and charge ¢ flowing
through the varactor diode are, respectively.

=141+ 42 = Iy coswi 4 I5cos Qwt +60) (1)

and
I | e
g = —sinwt 4+ — sin Qwt 4+ 8) + K, (2)
2] 20

where 6 is the phase angle between the fun-
damental and second harmonic in second
harmonic time measure, and K is the aver-
age charge to be determined by the bound-

Manuscript received May 5, 1965; revised Decem-
ber 13, 1965,
. 1P, Penfield and R. P. Rafuse, Varaclor Applica-
tions. Cambridge, Mass.: M.LT. Press, 1962.



1966

ary conditions such that
=0p, and gmm = Q4 3

where Qp and Q, are, respectively, the
charge at the breakdown voltage Vp and
contact potential ¢. Throughout the anal-
ysis we assume the diode is fully driven, as
implied by (3).

The voltage across the lossless abrupt-
junction diode is

Jmax

¢+_ Smax
4Ve+¢)

where Spax is the maximum elastance at V.
Substituting (2) into (4), we obtain

v =V + V1 cos (wf + §1) + Vacos Qut + §2)
+ Vg cos (3wt + 0) + V4 cos (4wt + 26),

@+0Q)* @

where

Vo= = 4 1 [ 202K + Q)"

I .
+ (I 2+ —4—)] , Dbias voltage (5)
Vi = MI[160XK 4 04) + 1.2

— 8wl o(K + Q) sin 6]1/2, (6)

Vy = M[40? 2K 4 Q)2 + I4*
— 4ol21y(K 4 Qy) sin ]2, o
Vs=—MLI,, V.= —3}MIp2, 8

Smax2
L 9
802 (Vs + ¢) ©
Iysing —
I—— 28in 6 — 4w(K + Q) , (10)
Izcos8
and
— 20l (K

3‘2 = tan—! . ~( + Q¢) cos 0 (11)

—T? + 201K + Qg) sin 6

Equations (6) to (8) are compatible with
similar equations obtained by Penfield and
Rafuse.? Note that the third and fourth har-
monic voltages V; and V, also exist across
the varactor terminals. Approximate anal-
yses®~¢ published previously assume only the
existence of the fundamental and second
harmonic voltages V; and V; across the di-
ode terminals and therefore cannot yield re-
sults in a self-consistent manner by con-
straining both currents and voltages.

Combining (6) and (10), and (7) and
(11), we obtain the simple and important
relations:

1
oS {1 = 7 MILI; cos 8 12)
1
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1
= F JI/I[—Ilz + Zwlz(K + Qd’) sin 6]. (13)
2
The input power for the lossless case, or
the input power to the “pure” nonlinear ca-
pacitance part of a diode only, is

Pl = %V1[1 cos _('1 = %MI1212 cos 6. (14)

The power output from the lossless varactor
is, similarly, according to the current con-
vention used in Fig. 2:

Py = %Vglz cos ({2 - 0)
— LMy cos 8 = — Pr. (13)

Depending upon the constraints im-
posed, the solutions of the nonlinear varac-
tor problem are not unique. Penfield and
Rafuse used maximum efficiency and maxi-
mum power transfer as the constraints. The
present approach uses minimum dissipation
and constant P; as constraints. The dissipa-
tion expression is, after substituting I, by
(14),

1
Py =— (11Z + I?)Rs

_2[11

Setting dPq/dl,=
condition as:

]Rx (16)
[211 cosze

0, we find the optimization

Py )1/3 =
— =21 17
M cos 8 V2l {an

We next optimize the efficiency and the
dissipation with respect to the phase angle
6. The efficiency, in general, is
Pl zI2 Rs
P1 + 3I.2R,
When the optimization condition (17) is
used, (18) and (16) become, respectively,

2(P1M2 cos? )13 —

Rs
€ = ) (19)
2(P1M? cos? 6)V/% + 2R,

_ bower output _

18
power input (18)

and

2 P
Pi==R, ( d (20)

2/3
M cos 0) ’

Setting de/d6 and dPy;/d8 equal to zero, we
have proved that 6=0° is the condition for
both maximum efficiency and minimum dissi-
pation. Equation (19) is plotted in Fig. 2 for
the parameters shown.

The efficiency of a doubler as a function of phase angle.

The sought-after input impedance is
Vi (V.
L= (— cos {1+ Rs) +3 (* sin g‘l) , (21)
11 ll
and the sought-after load impedance is

Zy = [—L;— cos ({2 — ) — Rs:l

Ve
ti[ 0] e
-1,
Taking the ratios of the resistive and reac-
tive parts, respectively, from (21) and (22),
we obtain the simple results:

Rm 1 Xm
— = —; and = —2
R; 2e X,
(foro = 0°). (23)

Accordingly, we discover the interesting fact
that the input and load resistances are re-
lated through efficiency.

The remaining task of our problem is to
find the current amplitude I; and the con-
stant of integration K of (2). Using (2), set-
ting dq/d(wt) =0, and applying the boundary
conditions (3) and the minimum dissipation
constraint I;/I;=+/2 of (17), we obtain for
the maximum efficiency case (§=0°) that

w(VB -+ ¢v
Y 17755mlx

(24)
and

Rt (55 ] @

The efficiency, accordingly, becomes, by
combining (18), (14), (17), and (24),

[5)
1—6.661—
(W,
=7, (26)
«w
1—13.322 —
We

where we=.Snax/R; is the “cutoff frequency.”
For low frequencies,

«
e=1—-20—"

We

@n

Figure 3 shows the comparison of (26) and
Penfield-Rafuse results.

The usual given parameters for a doubler
to be designed are the input frequency f,
output power Pguy=3MI2/,—3I2R,, pref-
erable breakdown voltage Vg, and intrinsic
series resistance R,. Combining (24), (9), and
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Pout we obtain the value Smax of the sought-
after varactor as:

Smax = 0.08504/(Vs + ) [ (Vs + ¢)
+ / (V5 + ¢)? — 984.27RePoui) /Pouts  (28)

The other sought-after quantities are:

Seaax
Ry = 0.02389 (T) — R, 29)
Smax R
Rin = 0.011945 ( ) + R, = o (30)
S 2e
H Smax
Li(load inductance) = 0.0031662 I GU

Ly(source impedance required) = 4L; (32)
Vi(bias voltage) = 0.3596(Ve + ¢) — ¢, (33)
and

Py = 19.932TR A (Vs + $)*/Smax®.  (34)

In passing, we shall supply the simple
proof that except for the doubler, any
abrupt-junction diode frequency multiplier
without an idler is not possible. Let the cur-
rent and charge flowing through the diode be

4 =141+ ¢y = I coswt + I, cos (newt + 6), (35)
and
g=q+ ¢
= Q;sinet + Qp sin (nwt +6) + K. (36)

Using (4), we have the voltage across the

diode
Smax?

4(Vs+9¢)
A[5 @2+ 09 + @+ 00]

v=—¢+

. Q2
+ 201(K + Qy) sin wt — - cos 2wt

+ Q1Qn cos [(n — 1wt + 6]
+ 20,.(K + Q¢) sin (nwt - 0)
— Q1Q cos [(n + 1)wt + 6]

— % cos (2mewt + 26) E . (37)

The efficiency of a doubler as a function of w.

Comparing (35) with (37), we notice that
except for #=2 case the fundamental voltage
is always in quadrature with the fundamen-
tal current and, likewise, #th harmonic volt-
age is always in quadrature with »th har-
monic current.

On the other hand, the same approach
can be used for frequency multipliers other
than the abrupt-junction doubler by adding
the necessary idler current or currents flow-
ing through the varactor as constraints.

It can be shown that doublers are pos-
sible for hyperabrupt junctions with
y(doping profile exponent) =% and quadru-
plers without idler are possible for the hyper-
abrupt functions with y=$4.

The results obtained by the present ap-
proach are quite different from those of the
Penfield-Rafuse approach using Fourier ex-
pansion of nonlinear elastance. The present
approach emphasizing minimum dissipation
can be particularly useful in cases where dis~
sipation is the principle problem; for ex-
ample, for high power varactor multipliers,
minimum dissipation is often the design ob-
jective, not maximum efficiency or maxi-
mum power output.

The present approach is simple and
straightforward in concept and does not
require the aid of a computer.

Caarues C. H. Tanc
Bell Telephone Labs., Inc.
Murray Hill, N. J.

Optimum Pitch of Traveling-
Wave Masers

The purpose of this correspondence is to
show theoretically that there exists an opti-
mum pitch (p in Fig. 1), which gives maxi-

Manuscript received December 20, 1965.
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mum net gain for traveling-wave masers
(TWM) [1], utilizing transverse strip slow
wave structures (e.g., comb-structures [2],
Karp-structures [3], and meander lines).
The net gain in dB of the traveling-wave
maser may be expressed [1] as

G = 27£S[L—i—i] o
P N

where L is the structure length, Ay the free
space wavelength, s the slowing factor,
|Qn] the magnetic quality factor of the
maser material, Qo the ohmic Q-factor, and
Q: the Q-factor related to the forward wave
losses in the isolator. The Q-factors depend
on the particular structure geometry.
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Fig. 1. A typical cross section of transverse

strip slow-wave structures.

A typical cross section of a transverse
strip slow-wave structure is shown in Fig. 1.
If the cross-sectional dimensions within one
period p are much smaller than the free
space wavelength, and if the strip lengths
are long compared to their cross sections, the
fields may be approximated by TEM waves
traveling along the strips (the x direction of
Fig. 1).

Assume the pitch of a particular slow-
wave structure is po. The slowing of the
structure becomes so and the ohmic Q-factor
Qos- A scaling of the cross section is obtained
when all cross-sectional dimensions are mul-
tiplied by the factor p/po. Hence, the new
pitch becomes p.

The impedance of the TEM waves K(¢)
is only dependent on the relative cross-sec-
tional dimensions and, consequently, re-
mains constant during the scaling procedure.
K (¢) does, however, depend on the phase
shift ¢ between two strips [2], [3]. If the
propagation constant of the wave traveling
along the structure (the 2 direction of Fig. 1)
is 8, we have

¢ =81

The w—¢ characteristic of the structure
is determined by the boundary conditions of
the TEM waves, the length of the strips, and
the impedance K(¢) [2], [3]. We now as-
sume that the boundary conditions, the
length of the strips, and the cross-sectional
dimensions divided by p is constant during a
scaling of the cross section by p/pe. Hence,
the w—¢ characteristic is independent of 2.
The group velocity v, and the slowing s of
the wave traveling in the z direction becomes

_d_w_ dw
AR TIE A
Co o Do Po
UL RN 2
B 2% d_w 17 0 » ()
P°d¢>

where ¢q is the velocity of light in vacuum.

The ohmic quality factor Qq is propor-
tional to V/S for constant relative cross-
sectional dimensions, where V is the volume
and Sis the surface of one period of the struc-



